Fertility Island Formation and Evolution in Dryland Ecosystems
نویسندگان
چکیده
Vast dryland regions around the world are affected by the encroachment of woody vegetation, with important environmental and economical implications. Grassland-to-shrubland conversions are often triggered by disturbance of grassland vegetation, and the consequent formation of barren areas prone to erosion-induced nutrient losses. Inhibition of encroachment by erosion-induced depletion of soil nutrients contributes to the emergence of highly heterogeneous landscapes with shrub-dominated fertility islands surrounded by nutrient-poor bare soil. Here, we develop a process-based simplistic model thataccounts for the two competing processes of resource depletion and shrub encroachment by a non-linear diffusion mechanism. The proposed model is able to generate stable vegetation patterns with the same statistical properties as those observed in areas with well-developed fertility islands. We also show how a subsequent disturbance of shrubland vegetation can shift the dynamics toward states with smaller vegetation biomass. The process of land degradation may then occur through a number of irreversible intermediate transitions associated with losses in ecosystem function.
منابع مشابه
Effect of Rangeland Conversion to Dryland Farming on Soil Chemical Properties (Case study: Kian rangelands, Lorestan, Iran)
Land use change as the most important destructive factor in natural ecosystems is a globally problem that changes soil properties. Therefore, correct management and recognition of change aspects on each component of the ecosystem is necessary. This process causes land destruction, ecosystem instability, soil erosion, and more biological threats. Due to increasing land use conversion from rangel...
متن کاملNonrainfall water origins and formation mechanisms
Dryland ecosystems cover 40% of the total land surface on Earth and are defined broadly as zones where precipitation is considerably less than the potential evapotranspiration. Nonrainfall waters (for example, fog and dew) are the least-studied and least-characterized components of the hydrological cycle, although they supply critical amounts of water for dryland ecosystems. The sources of nonr...
متن کاملCoupling vegetation organization patterns to soil resource heterogeneity in a central Kenyan dryland using geophysical imagery
[1] In dryland ecosystems, understanding the effects of heterogeneity in soil moisture and geophysical properties on vegetation structure and dynamics poses a suite of challenging research questions. Heterogeneity in soil depth can affect resource availability and the subsequent organization of woody vegetation, while spatiotemporal variation in soil moisture can reveal important ecohydrologica...
متن کاملDryland ecosystems: the coupled stochastic dynamics of soil water and vegetation and the role of rainfall seasonality.
In drylands the soil water availability is a key factor ruling the architecture of the ecosystem. The soil water reflects the exchanges of water among soil, vegetation, and atmosphere. Here, a dryland ecosystem is investigated through the analysis of the local interactions between soil water and vegetation forced by rainfall having seasonal and stochastic occurrence. The evolution of dryland ec...
متن کاملA morphometric analysis of vegetation patterns in dryland ecosystems
Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and th...
متن کامل